Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOR and ageing: a complex pathway for a complex process.

Identifieur interne : 001257 ( Main/Exploration ); précédent : 001256; suivant : 001258

TOR and ageing: a complex pathway for a complex process.

Auteurs : Mark A. Mccormick [États-Unis] ; Shih-Yin Tsai ; Brian K. Kennedy

Source :

RBID : pubmed:21115526

Descripteurs français

English descriptors

Abstract

Studies in invertebrate model organisms have led to a wealth of knowledge concerning the ageing process. But which of these discoveries will apply to ageing in humans? Recently, an assessment of the degree of conservation of ageing pathways between two of the leading invertebrate model organisms, Saccharomyces cerevisiae and Caenorhabditis elegans, was completed. The results (i) quantitatively indicated that pathways were conserved between evolutionarily disparate invertebrate species and (ii) emphasized the importance of the TOR kinase pathway in ageing. With recent findings that deletion of the mTOR substrate S6K1 or exposure of mice to the mTOR inhibitor rapamycin result in lifespan extension, mTOR signalling has become a major focus of ageing research. Here, we address downstream targets of mTOR signalling and their possible links to ageing. We also briefly cover other ageing genes identified by comparing worms and yeast, addressing the likelihood that their mammalian counterparts will affect longevity.

DOI: 10.1098/rstb.2010.0198
PubMed: 21115526
PubMed Central: PMC3001303


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOR and ageing: a complex pathway for a complex process.</title>
<author>
<name sortKey="Mccormick, Mark A" sort="Mccormick, Mark A" uniqKey="Mccormick M" first="Mark A" last="Mccormick">Mark A. Mccormick</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA 98195</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Shih Yin" sort="Tsai, Shih Yin" uniqKey="Tsai S" first="Shih-Yin" last="Tsai">Shih-Yin Tsai</name>
</author>
<author>
<name sortKey="Kennedy, Brian K" sort="Kennedy, Brian K" uniqKey="Kennedy B" first="Brian K" last="Kennedy">Brian K. Kennedy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21115526</idno>
<idno type="pmid">21115526</idno>
<idno type="doi">10.1098/rstb.2010.0198</idno>
<idno type="pmc">PMC3001303</idno>
<idno type="wicri:Area/Main/Corpus">001347</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001347</idno>
<idno type="wicri:Area/Main/Curation">001347</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001347</idno>
<idno type="wicri:Area/Main/Exploration">001347</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOR and ageing: a complex pathway for a complex process.</title>
<author>
<name sortKey="Mccormick, Mark A" sort="Mccormick, Mark A" uniqKey="Mccormick M" first="Mark A" last="Mccormick">Mark A. Mccormick</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA 98195</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Shih Yin" sort="Tsai, Shih Yin" uniqKey="Tsai S" first="Shih-Yin" last="Tsai">Shih-Yin Tsai</name>
</author>
<author>
<name sortKey="Kennedy, Brian K" sort="Kennedy, Brian K" uniqKey="Kennedy B" first="Brian K" last="Kennedy">Brian K. Kennedy</name>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (genetics)</term>
<term>Aging (physiology)</term>
<term>Animals (MeSH)</term>
<term>Caenorhabditis elegans (genetics)</term>
<term>Caenorhabditis elegans (physiology)</term>
<term>Humans (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>TOR Serine-Threonine Kinases (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Caenorhabditis elegans (génétique)</term>
<term>Caenorhabditis elegans (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Sérine-thréonine kinases TOR (physiologie)</term>
<term>Transduction du signal (MeSH)</term>
<term>Vieillissement (génétique)</term>
<term>Vieillissement (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aging</term>
<term>Caenorhabditis elegans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Aging</term>
<term>Caenorhabditis elegans</term>
<term>Saccharomyces cerevisiae</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Studies in invertebrate model organisms have led to a wealth of knowledge concerning the ageing process. But which of these discoveries will apply to ageing in humans? Recently, an assessment of the degree of conservation of ageing pathways between two of the leading invertebrate model organisms, Saccharomyces cerevisiae and Caenorhabditis elegans, was completed. The results (i) quantitatively indicated that pathways were conserved between evolutionarily disparate invertebrate species and (ii) emphasized the importance of the TOR kinase pathway in ageing. With recent findings that deletion of the mTOR substrate S6K1 or exposure of mice to the mTOR inhibitor rapamycin result in lifespan extension, mTOR signalling has become a major focus of ageing research. Here, we address downstream targets of mTOR signalling and their possible links to ageing. We also briefly cover other ageing genes identified by comparing worms and yeast, addressing the likelihood that their mammalian counterparts will affect longevity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21115526</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>366</Volume>
<Issue>1561</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jan</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos Trans R Soc Lond B Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>TOR and ageing: a complex pathway for a complex process.</ArticleTitle>
<Pagination>
<MedlinePgn>17-27</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2010.0198</ELocationID>
<Abstract>
<AbstractText>Studies in invertebrate model organisms have led to a wealth of knowledge concerning the ageing process. But which of these discoveries will apply to ageing in humans? Recently, an assessment of the degree of conservation of ageing pathways between two of the leading invertebrate model organisms, Saccharomyces cerevisiae and Caenorhabditis elegans, was completed. The results (i) quantitatively indicated that pathways were conserved between evolutionarily disparate invertebrate species and (ii) emphasized the importance of the TOR kinase pathway in ageing. With recent findings that deletion of the mTOR substrate S6K1 or exposure of mice to the mTOR inhibitor rapamycin result in lifespan extension, mTOR signalling has become a major focus of ageing research. Here, we address downstream targets of mTOR signalling and their possible links to ageing. We also briefly cover other ageing genes identified by comparing worms and yeast, addressing the likelihood that their mammalian counterparts will affect longevity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McCormick</LastName>
<ForeName>Mark A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Shih-Yin</ForeName>
<Initials>SY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kennedy</LastName>
<ForeName>Brian K</ForeName>
<Initials>BK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="N">Caenorhabditis elegans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21115526</ArticleId>
<ArticleId IdType="pii">366/1561/17</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2010.0198</ArticleId>
<ArticleId IdType="pmc">PMC3001303</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FASEB J. 2000 Nov;14(14):2135-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Aug;7(2):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15296714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 May 20;399(6733):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10353251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 20;292(5516):468-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2006 Jan;12(1):122-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Dec 24;462(7276):1061-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Aug;131(16):3897-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15253933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2006 Dec;5(6):515-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 5;457(7230):726-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2006 Oct;4(4):259-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Oct 2;139(1):149-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19804760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Oncol. 2004 Oct 15;22(20):4217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15483033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Aug 15;18(16):1926-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ScientificWorldJournal. 2010;10:161-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20098959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2002 May-Jun;13(4):156-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Mar-Apr;3(2):93-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 8;423(6936):181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Jan;7(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18177721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Mar 5;327(5970):1223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20203043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Dec 1;18(23):2879-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Aug;5(6):847-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 13;452(7184):230-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18337823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Mar 3;7(3):e60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19260765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2002 Dec;37(12):1371-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12559406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 May;10(5):307-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19339977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2009 Sep;8(5):542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19594484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Jan 9;17(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17208179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Oct;1790(10):1067-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19539012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Apr;20(8):2706-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10733573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Feb;4(2):e24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 11;426(6967):620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2009 Aug;8(4):353-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Dec;183(4):1373-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 29;450(7170):736-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18046414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Sep 27;166(7):1055-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Jan 15;22(2):239-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18198340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2009 Jan;1(1):131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2004 Apr;3(4):462-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15300954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Apr;6(3):415-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20096689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 3;270(5):2320-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Oct 9;17(19):1646-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17900900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Aug 15;277(5328):942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9252323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 15;281(37):27643-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16847060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Feb 15;23(4):496-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2006 Dec;5(6):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Sep 5;301(5638):1387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 1989;24(3):251-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2731582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Apr 1;8(7):1014-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Nov;24(21):9508-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15485918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2009 Jun;19(6):260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19419870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 21;285(21):15960-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2006 Jun;9(6):425-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(7):e6348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7539918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 16;460(7253):392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):292-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2010;2(1):69-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20228940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12(6):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 Dec 1;118(Pt 23):5431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16278294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Jul 1;6(13):1574-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 25;464(7288):504-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Dec 1;18(23):2893-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2009 Jul;8(3):173-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19491041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Aug;8(2):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18680711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Jan;4(1):e13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18225956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 2;326(5949):140-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19797661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22229-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Div. 2006 Apr 03;1:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Oct;6(5):649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17711561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Jun;6(6):e1000990</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Jan;11(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Feb;24(3):1301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10430-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Jul;7(7):1127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 May 1;90(9):4304-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2007 Apr;42(4):275-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17174052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Dec 14;28(5):721-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18082597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 May;5(5):e1000486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 9;431(7005):200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Pathol. 2009 Jan;37(1):47-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19075044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 22;289(5487):2126-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11000115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Feb;30(4):1049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Apr 15;8(8):1256-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Sep 5;134(5):703-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18775299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Oct 2;5(10):e261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Dec 2;366(6454):461-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8247153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Feb;6(1):95-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2008 Aug;7(4):478-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2009 Sep;12(9):1129-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 13;292(5515):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 22;324(5930):1029-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19460998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2003 Apr;2(2):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12882320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Oct;19(10):4051-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1988 Jan;118(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8608934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2008 Feb;63(2):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Apr;21(2):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Apr;5(4):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Aug;8(15):2324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Dec;141(4):1399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8601482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2007 Jul;19(7):1393-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2007 Apr;12(4):487-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 1996 Jun 22;263(1371):755-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8763795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2007 Aug;293(2):C712-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2008 Jun;7(3):285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2010 Aug;9(4):545-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20456299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Aug;7(2):179-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15296715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):564-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18340043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Feb 15;8(4):567-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2007 Apr;32(4):180-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17412594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Dec 21;24(24):4271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16308562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Aug;24(15):6710-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Dec;24(12):604-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 29;324(5931):1196-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13091-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9789046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 18;123(4):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Kennedy, Brian K" sort="Kennedy, Brian K" uniqKey="Kennedy B" first="Brian K" last="Kennedy">Brian K. Kennedy</name>
<name sortKey="Tsai, Shih Yin" sort="Tsai, Shih Yin" uniqKey="Tsai S" first="Shih-Yin" last="Tsai">Shih-Yin Tsai</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Mccormick, Mark A" sort="Mccormick, Mark A" uniqKey="Mccormick M" first="Mark A" last="Mccormick">Mark A. Mccormick</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001257 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001257 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21115526
   |texte=   TOR and ageing: a complex pathway for a complex process.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21115526" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020